Na(+) and K(+) concentrations, extra- and intracellular voltages, and the effect of TTX in hypoxic rat hippocampal slices.
نویسندگان
چکیده
Severe hypoxia causes rapid depolarization of CA1 neurons and glial cells that resembles spreading depression (SD). In brain slices in vitro, the SD-like depolarization and the associated irreversible loss of function can be postponed, but not prevented, by blockade of Na(+) currents by tetrodotoxin (TTX). To investigate the role of Na(+) flux, we made recordings from the CA1 region in hippocampal slices in the presence and absence of TTX. We measured membrane changes in single CA1 pyramidal neurons simultaneously with extracellular DC potential (V(o)) and either extracellular [K(+)] or [Na(+)]; alternatively, we simultaneously recorded [Na(+)](o), [K(+)](o), and V(o). Confirming previous reports, early during hypoxia, before SD onset, [K(+)](o) began to rise, whereas [Na(+)](o) still remained normal and V(o) showed a slight, gradual, negative shift; neurons first hyperpolarized and then began to gradually depolarize. The SD-like abrupt negative DeltaV(o) corresponded to a near complete depolarization of pyramidal neurons and an 89% decrease in input resistance. [K(+)](o) increased by 47 mM and [Na(+)](o) dropped by 91 mM. Changes in intracellular Na(+) and K(+) concentrations, estimated on the basis of the measured extracellular ion levels and the relative volume fractions of the neuronal, glial, and extracellular compartment, were much more moderate. Because [Na(+)](o) dropped more than [K(+)](o) increased, simple exchange of Na(+) for K(+) cannot account for these ionic changes. The apparent imbalance of charge could be made up by Cl(-) influx into neurons paralleling Na(+) flux and release of Mg(2+) from cells. The hypoxia-induced changes in interneurons resembled those observed in pyramidal neurons. Astrocytes responded with an initial slow depolarization as [K(+)](o) rose. It was followed by a rapid but incomplete depolarization as soon as SD occurred, which could be accounted for by the reduced ratio, [K(+)](i)/[K(+)](o). TTX (1 microM) markedly postponed SD, but the SD-related changes in [K(+)](o) and [Na(+)](o) were only reduced by 23 and 12%, respectively. In TTX-treated pyramidal neurons, the delayed SD-like depolarization took off from a more positive level, but the final depolarized intracellular potential and input resistance were not different from control. We conclude that TTX-sensitive channels mediate only a fraction of the Na(+) influx, and that some of the K(+) is released in exchange for Na(+). Even though TTX-sensitive Na(+) currents are not essential for the self-regenerative membrane changes during hypoxic SD, in control solutions their activation may trigger the transition from gradual to rapid depolarization of neurons, thereby synchronizing the SD-like event.
منابع مشابه
Sodium influx blockade and hypoxic damage to CA1 pyramidal neurons in rat hippocampal slices.
We studied the effects of lidocaine and tetrodotoxin (TTX) on hypoxic changes in CA1 pyramidal neurons to examine the ionic basis of neuronal damage. Lidocaine (10 and 100 microM) and TTX (6 and 63 nM) delayed and attenuated the hypoxic depolarization and improved recovery of the resting and action potentials after 10 min of hypoxia. Lidocaine (10 and 100 microM) and TTX (63 nM) reduced the num...
متن کاملThe effect of ketamine on synaptic transmission and synaptic plasticity in CA1 area of rat hippocampal slices
The effect of ketamine (1-100 µM), which has NMDA receptor antagonist properties, on synaptic transmission and long-term potentiation (LTP) in CAl area of rat hippocampus was examined in vitro. Field potentials were recorded in pyramidal cell layer following Schaffer collateral stimulation. Primed-burst stimulation (PEs) was used for induction of LTP. The amplitude of population spiks (PS) was ...
متن کاملNa(+) dependence and the role of glutamate receptors and Na(+) channels in ion fluxes during hypoxia of rat hippocampal slices.
Spreading depression (SD) as well as hypoxia-induced SD-like depolarization in forebrain gray matter are characterized by near complete depolarization of neurons. The biophysical mechanism of the depolarization is not known. Earlier we reported that simultaneous pharmacological blockade of all known major Na(+) and Ca(2+) channels prevents hypoxic SD. We now recorded extracellular voltage, Na(+...
متن کاملEffects of Administration of Perinatal Bupropion on the Population Spike Amplitude in Neonatal Rat Hippocampal Slices
Objective(s) Bupropion is an atypical antidepressant that is widely used in smoke cessation under FDA approval. The study of synaptic effects of bupropion can help to finding out its mechanism(s) for stopping nicotine dependence. In this study the effects of perinatal bupropion on the population spike (PS) amplitude of neonates were investigated. Materials and Methods Hippocampal slices were...
متن کاملRole of adenosine receptors and protein phosphatases in the reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices
The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes (PS) was studied in the hippocampal CA1 in vitro. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minute...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 83 2 شماره
صفحات -
تاریخ انتشار 2000